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This article considers a two-person game in which the first player has access to  
certain information that is valuable but unknown to the second player. The first 
player can distort the information before it is passed on to the second player. The 
purpose in distorting the information is to  render it as useless as possible to  the 
second player. Based o n  the distorted information received, the second player then 
maximizes some given objective. In certain cases he may still be able to  use the 
distorted information, but sometimes the information has been so badly distorted 
that it becomes completely useless to  him. 0 1993 John Wiley & Sons, Inc. 

1. INTRODUCTION 

Let r be a two-person zero-sum game whose parameters are described by a 
quadruple (S, p ,  C, {D,,: ( i ,  j )  E C}}. Here S is a finite set whose elements are 
ordered pairs ( i ,  j )  of positive integers, p is a discrete probability function defined 
on S by p,,  = prob{(i, j ) } ,  C = { ( i ,  j )  E S :  p,, > 0}, and D,, is a nonempty subset 
of S. This quadruple is common knowledge to the two players P ,  and P2. The 
game l7 consists of three sequential moves. In the first move, a chance device 
uses p to pick a pair ( i ,  j )  from S .  The numbers i and j are then dropped into 
box 1 and box 2, respectively. In the second move, P I  peeks into the boxes to 
see the numbers i and j .  He then closes the boxes, chooses a pair ( k ,  1) from 
D,,, labels k on the lid of box 1, and labels 1 on the lid of box 2. In the third 
and final move, P2 looks at the labels on the lids, selects a box, and receives a 
payoff equal to the selected box’s actual contents. The objective in r is for P I  
and P2 to minimize and maximize, respectively, this payoff. 

Notice the box contents ( i ,  j )  are true information, whereas the lid labels ( k ,  
I) are distorted information. The true information, which is useful to P2 to select 
a correct box, is not accessible to him. Instead, he is given the information which 
has been distorted by PI  to foil his attempt to select a correct box. The amount 
of distortion PI can introduce is specified by the sets D,,. The natural questions 
to ask here are: How should P ,  distort the information? Is the distorted infor- 
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mation still useful to P2, and if the answer is yes, how can he use such distorted 
information to select a box? 

The motivation of r comes from deception games, first considered by Thomp- 
son in his unpublished undergraduate thesis at Harvard University in 1970. 
Spencer [4] introduced deception games to the open literature when he posed 
the question of whether the value of a certain deception game is t. Baston and 
Bostock [ 11 settled the existence question by proving very general deception 
games always have a solution. The formal definition of a deception game can 
be found in their article [l]. In another related article, Baston and Bostock [2] 
formulated and solved a cover-up game. The discrete version of this cover-up 
game may be regarded as a particular case of the game here by taking S = {(i, 
j ) :  i , j  = 1, . . . , n + l}, C = { ( i , j ) :  i, j = 1, . . . , n}, pi, = l / n 2 ,  and D ,  = 
{(i, n + l), (n + 1, j ) }  for each (i, j )  in C. 

2. THE GAME 

Because I' is a finite game, its value u exists. As it is defined, I' is a game in 
extensive form. The standard method to solve r is to convert it to its normal 
form, that is, to set up the appropriate game matrix. The resulting matrix game 
can then be solved using linear programming. The main drawback of this method 
is due to the exponential size of pure strategies involved. To see this is the case, 
let 1x1 denote the cardinality of a set X .  It is easily seen that P ,  has n JD,,I pure 
strategies, where the product is taken over (i, j )  E C. Similarly, P2 has 2lLI pure 
strategies, where L = { ( k ,  I): 3(i, j )  E C such that ( k ,  I )  E D,,}. For a physical 
interpretation, C is the set of box contents, whereas L is the set of lid labels. 
Because of the technical difficulty of solving very large-scale linear programs, 
we look for a more efficient method to solve r. This leads us to consider be- 
havioral strategies that turn out to offer a computational advantage. Behavioral 
strategies were first introduced by Kuhn [3] in a seminal article on games in 
extensive form. A behavioral strategy can be viewed as a local randomization 
on the occasion of a choice rather than the total randomization of pure strategies 
made before a play by means of a mixed strategy. We will not elaborate further 
on behavioral strategies because the method developed here is basically self- 
contained. 

Consider the linear program ( P ) :  

X k /  2 0, ( k ,  I )  E L. (1) 

The variables in ( P )  are xkl  for ( k ,  I )  E L ,  and yii for ( i ,  j )  E C. An optimal 
solution exists for ( P )  because the nonempty feasible set is closed, and the 
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objective function is bounded from above. Let {x$/, y ; }  be an optimal solution, 
and let z* be the optimal value of P. We shall show u = z* .  

Let P2 adopt the strategy q, where he selects boxes 1 and 2 with probabilities 
x$/ and 1 - x;, respectively, if the lid labels are ( k ,  I). We claim that, by using 
v2, P2 can ensure an expected payoff of at least z*. Suppose P1 sees the box 
contents ( i ,  j ) ;  this even can arise with probability pi, > 0. If Pl changes (i ,  j )  
to some ( k ,  I) E D,, P2 will receive, when using a2, an expectation i x t /  + 
j(1 - x;) for this event. Thus P2 can ensure an expectation of at  least 
min(k.l)ED,l {ixb + j(1 - x$J} for this event. We claim that 

From (l), 

Suppose the inequality in (3) is strict for some (i ,  j )  E C. Then y ;  < ixz/ + 
j(1 - xQ) for each ( k ,  I )  E Dll. It is therefore possible to increase this particular 
y ;  by a small amount, while keeping the values of all other optimal variables 
in {x;/, y,T} unchanged, to obtain a feasible solution to ( P )  with a larger value 
of the objective function. This contradiction proves (2). Summing over ( i ,  j )  E 
C, P2 can ensure an expected payoff of at least C(l,,)EC plly,T = 2". Hence 

u 2 2*. (4) 

To prove the reverse inequality u I z*,  we proceed as follows. For (i, j )  E 
C and ( k ,  I )  E L ,  define 

1, 
0, otherwise. 

if ( k ,  4 E Dil, 

The dual of ( P )  is (D): 

subject to 

t .  k/ 2 0 3 (i, j )  E c, ( k ,  I) E D,. 4 
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The variables in ( D )  are s k /  for ( k ,  I )  E L ,  and t: for (i, j )  E c, ( k ,  1) E D,,. 
Since ( P )  has an optimal solution, ( D )  also has an optimal solution (sz / ,  tff"} with 
the optimal value of z" .  

Let PI adopt the strategy vl where he changes (i, j )  to ( k ,  I )  E D,, with 
probability tfjl*lp,, if the box contents are (i, j ) .  We claim PI can restrict P2's 
expected payoff to at most z * .  Let E l ( k ,  I) and E, (k ,  I )  denote the contribution 
to P2's expected payoff when he chooses box 1 and box 2, respectively, on seeing 
( k ,  I). Then 

E l ( k ,  I )  = c p i j  6ytf;'*lpij = 2 j 6 y t y .  
( i . j ) t C  (i.j)EC 

Notice, for example, by the definition of E l ( k ,  I), we have incorporated the 
probability of ( k ,  I) occurring into the expression. Now P2 can receive, for each 
( k ,  I) E L ,  at most max{El(k, I ) ,  E 2 ( k ,  I)}, so that he can receive an expected 
payoff of at most E(k ,oEL max{E,(k,l), &(k, I ) ) .  

We next show this last sum is equal to z" .  For each ( k ,  I) E L such that 
sz/ > 0, the inequality in ( 5 )  must hold as an equality (note our discussion is con- 
fined to these constraints at an optimal solution). If not, we can decrease the 
value of the objective function by reducing the value of this sf l  by a small amount. 
Hence for sR > 0, we have E l ( k ,  I )  - E, (k ,  I) = sz/ > 0, so that E , ( k ,  I )  > 
E2(k ,  I). From ( 5 ) ,  for sz/ = 0, we have E2(k ,  I) 2 E , ( k ,  I). Let L ,  = { ( k ,  I )  
E L:  s l /  > 0} and L,, = { ( k ,  I )  E L:  s t /  = O}. The optimal value of (D) is 
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This proves that, by using ul, P ,  can restrict P,'s expected payoff to at most 2 " .  

Hence 

u 5 z * .  (6) 

From (4) and (6), we have the following theorem. 

THEOREM: The value of r is u = z " .  The strategies uI and u2 are optimal 
for PI and P2,  respectively. 

We can now address the questions posed earlier. P I  should distort the infor- 
mation according to ul, while P,  should select a box according to a,. Next, 
consider the case when the distorted information is useless to P,. Under such a 
circumstance, he has no choice but to ignore completely the distorted information 
in his selection of a box. In other words, he does not even have to look at the 
lid labels. If he always selects box 1 (respectively, box 2), his expected payoff 
is C(!,j)ES ipjj (respectively, C( j , j )ES  jpij) .  By selecting the appropriate box, P2 can 
obtain an expected payoff equal to the larger of these two quantities, so that 

If the inequality in (7) holds as an equality, clearly the distorted information is 
useless to P2.  On the other hand, if this inequality is strict, then the distorted 
information is useful to P,. This is because, by using it wisely, he can do better 
than by selecting the box with the larger mean box contents. Thus we have a 
simple criterion to determine whether the distorted information is useful to P2 
or not. 

3. A PARTICULAR GAME 

Let n and r be given integers with n 2 2 and 1 I Y I n - 1. Let N = {(i, 
j ) :  i, j = 1, . . . , n}. Consider the case of r where S = C = N ,  pi, = l / n 2 ,  
D,, = {(i, h):  h E (1, . . . , n}, l j  - hl 5 r} U {(g, j ) :  g E (1, . . . , n}, and 
Ii - gl 5 r} for (i ,  j )  E N .  In other words, the box contents (i, j )  are chosen 
uniformly from N ;  PI is allowed to change only one of the box contents to some 
integer in (1, . . . , n} not more than r units distance away. We denote this game 
and its value by r,, and unr, respectively. Note that it is meaningful to define 
r,,, for r 2 n. But since rnr = r,,,_, for r 2 n,  it suffices to consider Y 5 n - 
1. 

Let u be an optimal strategy of PI in rnr. If PI uses u in rn,r+ I ,  he can restrict 
P,'s expected payoff to at most unr. This implies 

A lower bound on u,, can be easily obtained from (7); that is, 

u,, 3 (n  + 1)/2, 1 I r 5 n - 1. (9 
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Our object now is to solve r,,, for various values of n and r ,  subject to n 1 2 
and 1 i r i n - 1. Given fixed n and r ,  we need, in general, to solve either 
( P )  or ( D )  to obtain a solution to r,,. We will give an explicit solution of rnr 
for n arbitrary, and the four cases r = 1, 2, n - 2, n - 1. Notice these values 
of r are near the endpoints 1 and n - 1, these cases being the simplest ones to 
solve. Computational experience suggests a solution of r,,, is quite involved for 
r near the midpoint of 1 and n - 1. As before, we denote the box contents by 
(i, j ) ,  and the lid labels by ( k ,  1). To simplify the description of the players’ 
strategies in the proofs of Propositions 1-4 below, we introduce the following 
convention and notation. When describing a strategy (sometimes called a re- 
sponse) of P I ,  we have to indicate how he changes each (i, j) € N .  For brevity, 
we will only indicate those (i, j )  that are actually changed. The remaining (i, j )  
not explicitly mentioned are assumed to be left unchanged by PI. We say P I  
collapses B (a subset of N )  to mean P I  changes each (i, j )  E B with i # j to (i, 
i) or ( j ,  j ) ,  depending on whether i < j or i > j .  We denote by c b  the strategy 
of P2 where he selects box 1 if k 2 I, and box 2 if k < 1. Basically, @b tells P, 
to select the box with the bigger lid label. Let N ,  = {(i, j )  € N :  Ii - jl 5 r } .  

PROPOSITION 1: u , ~ ]  = a,, = (4n3 + 3n2 - 7n + 6) /6n2 ,  n 2 2 

PROOF: Let Pz adopt ch. It is easy to check that a best response from P ,  
is to change (i - 1, i) to (i, i), i = 2, . . . , n. Simple calculations show P, will 
receive an expected payoff of a, against this best response. Since P2 can ensure 
an expected payoff of at least a,,, we have 

Let PI adopt the strategy where he collapses N1. It is again easy to check PI 
can restrict P2’s expected payoff to at most a,,, so that 

The result then follows from (10) and (11). 

PROPOSITION 2: u , . , - I  = (n  + 1)/2,  n 2 2. 

PROOF: Let PI adopt the strategy where he collapses N .  Using this strategy, 
PI can restrict P2’s expected payoff to ( n  + 1)/2, so that u , . ~ , - ~  i (n  + 1)/2. 
The result then follows from (9). Note that to always select box 1 is an optimal 
strategy of Pz. 

PROPOSITION 3: Let 

if n = 3 ,  
if n = 4, 
if n 2 5 .  (n  + 1)/2, 

Then u , , , - ~  = b,, n r 3. 
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PROOF: 
Next, consider the case n = 4. Let Pz adopt the strategy where he selects box 

1 if ( k ,  I) = (2,3); otherwise, he selects the box according to a b .  A best response 
from P I  is to change (3, 2) to (1, 2), (1, 2) and (3, 4) to (3, 2), (1, 3), and (2, 
4) to (2, 3). Simple calculations show P2 can ensure an expected payoff of at 
least 9 ,  so that ud2 1 Y . Let P I  adopt the strategy where he changes (1, 4) and 
( 3 ,  2) to (1, 2), (2, 3) and (4, 1) to (2, l) ,  and collapses ((1, 2), (1, 3), (2, l), 
(2, 4), (3, I), ( 3 ,  4), (4, 2), (4, 3)). It is easy to verify ~ 4 2  5 Y .  

Consider now the case n 1 5 .  Let P I  adopt the strategy where he changes 

The case n = 3 follows from Proposition 1. 

( I ,  n )  to  (1, 2) with probability 4, 
( n  - I ,  2) to ( I ,  2) with probability 3, 

(1, n )  to ( n  - 1, n )  with probability 4, 
( n  - 1, 2) to (n  - 1, n )  with probability 4, 
( n  - I .  n - 2) to  ( n  - 1, n ) ,  
( n .  1) to (2, 1) with probability $. 
(2, n - 1) to  (2. 1) with probability 8. 

( n ,  1) to  ( n ,  n - 1) with probability $, 
(2, n - 1) to  ( n ,  n - 1) with probability 4, 
( n  - 2. n - 1) to ( n ,  n - 1). and 
collapses the remaining pairs in N,! .? .  

(3, 2) to ( I .  2). 

(2. 3) to  (2, 1). 

For each fixed ( k ,  I) E {(l, 2), (2, l), (n  - 1, n ) ,  (n ,  n - l ) ,  (1, l ) ,  . . . , 
( n ,  n)},  P ,  will receive the same expectation, independent of the box he chooses. 
This implies P I  can restrict P2’s expected payoff to (n  + 1)/2, so that u,,.,,-~ 5 

( n  + 1)/2. The result then follows from (9). 

REMARK: When n = 4 in Proposition 3, is not an optimal strategy of 
P2. If P,  adopts a b ,  a best response from P ,  is to change (1, 3) to (1, l), (2, 3 )  
to (2, l ) ,  (2, 4) to (2, 2), (3, 2) to (1, 2), (1, 2) and (3, 4) to (3, 2), (2, I ) ,  and 
(4, 3) to (2, 3). Thus P2 can only ensure an expected payoff o f f ,  which is less 
than Y .  

PROPOSITION 4: Let 

if n = 3, 
if n = 4, 
if n 2 5 .  (4n3 + 3n2 - 25n + 36)/6n2, 

Then v,., = c,, n 2 3. 

PROOF: The case n = 3 follows from Proposition 2, and the case n = 4 
from Proposition 3. 

Consider now the case n L 5 .  Let P,  adopt a b .  It is easy to check a best 
response from P I  is to change (1, 2) to (3, 2), (n ,  n - 1) to (n  - 2, n - l ) ,  
(i, i + 2) to (i, i), (i + I ,  i) to (i + 1, i + 2), (i + 1, i + 2) to (i + 1, i), 
i = 1, . . . , n - 2. Simple calculations show P2 will receive an expected payoff 
of c, against this best response. Since P2 can ensure an expected payoff of at 
least c,, we have vn2 2 c,, n 2 5 .  
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It is routine to verify the following strategies of P I  can restrict P2’s strategy 
to at most c,,, so that u , , ~  5 c,,, n e 5 .  In the strategies below, when we say PI 
changes (&, jo )  to (k , ) ,  lo),  it is implicitly assumed he also changes ( jo ,  i,)) to (lo, 

When n = 5 ,  PI  changes (2, l ) ,  (2, 5 ) ,  (4 ,3)  to (2,3),  changes (1,4) ,  (3 ,2) ,  
( 5 ,  4) to (3, 4), and collapses the remaining pairs in N 2 .  

When n = 6, P ,  changes (2, 1) with certainty, (2, 5 )  with probability i, (4, 
3) with probability 4 to (2, 3), changes (3, 2), (3, 6), ( 5 ,  4) to (3, 4), changes 
(6, 5 )  with certainty, (2, 5 )  with probability 4, (4, 3) with probability to (4, 5 ) ,  
and collapses the remaining pairs in N 2 .  

ko). 

When n e 7, PI changes 

(2. I )  to (2, 3) .  (n.  n - 1) to ( n  - 2, n - 1). 
(i, i + 3) and (i + 2, i + 1) to (i. i + 1). i = 1, . . . , jni21 - 1, 
(i, i + 3) and (i + 2, i + 1) to (i + 2, i + 3 ) ,  i = 1n12J. . . . , n - 3, and 
collapses the remaining pairs in N 3 .  This completes the proof. 

Let n be fixed. From (8), as r increases from 1 to n - 1, u,,, decreases (not 
necessarily strictly) from a,, to (n + 1)/2. Let m be the smallest integer such 
that u , , ~ ,  = (n + 1)/2; m exists by Proposition 2. It follows u,,, = (n  + 1)/2 for 
r > m. The implication here is that, if we solve r,,,. in terms of increasing r ,  we 
can stop as soon as we find the first r with unr = ( n  + 1)/2. In r,,,, the distorted 
information is useful or not to P 2 ,  depending whether r < m or Y 2 m. Given 
n ,  the value of m can be obtained by solving r,,, for a few values of r chosen 
iteratively, say, by a bisection method. For example, when n = 5 ,  we have 
m = 3. 

4. CONCLUSIONS 

The primary purpose of this article is to investigate how a person P2 can make 
a good decision based on some distorted information. In particular, we would 
like to identify the condition under which this information is useful to him. We 
assume the worst-case scenario-the information has been deliberately distorted 
by a clever adversary PI to penalize him as much as possible. This assumption 
may be questionable in some situations. However, if P2 finds the information 
distorted from such an adversary useful, then of course he can be certain of the 
usefulness of such information distorted by nature or lesser adversaries. We 
formulate a simple game with distorted information in terms of two boxes in 
Section 2, and show how to solve it using linear programming. Note that the 
method there can be easily extended to solve the problem with any finite number 
of boxes, each box containing one number. We have not analyzed this more 
general problem due mainly to the complexity in notation. In Section 3, we 
discuss in greater detail a particular game which is nontrivial to solve explicitly. 
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